# P-840 · P-841

# **Preloaded Open- & Closed-Loop Piezo Translators (LVPZT)**



P-840, P-841 piezo translators (DIP switch for size comparison)

- Displacement to 90 µm
- Pushing Forces to 1000 N
- Preloaded for Pulling Forces to 50 N
- Sub-msec Response
- Sub-nm Resolution
- Options: Ball Tip, Vacuum Versions

P-840 and P-841 preloaded piezo translators are high-resolution linear actuators for static and dynamic applications. They provide sub-millisecond response and sub-nanometer resolution. The internal spring preload makes them ideal for dynamic applications.

# High Accuracy in Closed-Loop Operation

The P-840 is specifically designed for open-loop operation. For highest accuracy, the P-841 closed-loop version includes integrated ultra-high-resolution strain gauge posi-

(codes explained p. 1-3)

tion sensors and operate with PI servo-control electronics see page 4-19 ff. and page 4-31 ff. for details).

## Design

These translators are equipped with highly reliable multilayer PZT ceramic stacks protected by a non-magnetic stainless steel case with internal spring preload. The standard translator tip and base have tapped holes. Select the P-840.95 ball tip option to help decouple offaxis or torque loads from the translator.

## Mounting

For push/pull forces up to 5 N, the translator can be mounted by clamping around the case. For larger forces, the translator must be mounted by the base. For positioning of magnetic parts the P-176.20 magnetic adapter can be screwed into the translator tip.

For more mounting guidelines see page 1-48.

## **Ordering Information**

#### P-841.10

Closed-Loop LVPZT Translator, 15 µm

#### P-841.20

Closed-Loop LVPZT Translator, 30 µm

#### P-841.30

Closed-Loop LVPZT Translator, 45 µm

#### P-841.40

Closed-Loop LVPZT Translator, 60 µm

#### P-841.60

Closed-Loop LVPZT Translator, 90 µm

#### P-840.10

Open-Loop LVPZT Translator, 15 µm

#### P-840.20

Open-Loop LVPZT Translator, 30 µm

#### P-840.30

Open-Loop LVPZT Translator, 45 µm

## P-840.40

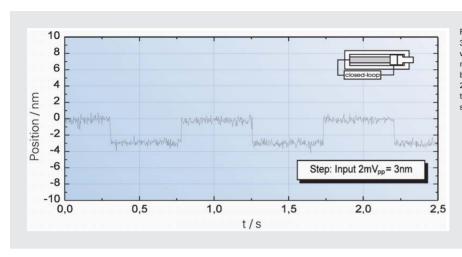
Open-Loop LVPZT Translator, 60 μm

#### P-840.60

Open-Loop LVPZT Translator, 90 µm

Ask about custom designs!

## **Application Examples**


- Static and dynamic positioning
- Disk drive testing
- Smart structures
- Adaptive mechanics
- Vibration cancellation
- Switching
- Laser tuning
- Patch clamping

For more examples see page 1-5

## Technical Data Closed-Loop

| Models                                        | P-841.10    | P-841.20    | P-841.30    | P-841.40    | P-841.60    |
|-----------------------------------------------|-------------|-------------|-------------|-------------|-------------|
| Open-loop travel @ 0 to 100 V                 | 15          | 30          | 45          | 60          | 90          |
| Closed-loop travel                            | 15          | 30          | 45          | 60          | 90          |
| * Integrated feedback sensor                  | SGS         | SGS         | SGS         | SGS         | SGS         |
| ** Closed-loop / open-loop resolution         | 0.3 / 0.15  | 0.6 / 0.3   | 0.9 / 0.45  | 1.2 / 0.6   | 1.8 / 0.9   |
| *** Static large-signal stiffness             | 57          | 27          | 19          | 15          | 10          |
| Push/pull force capacity                      | 1000 / 50   | 1000 / 50   | 1000 / 50   | 1000 / 50   | 1000 / 50   |
| Torque limit (at tip)                         | 0.35        | 0.35        | 0.35        | 0.35        | 0.35        |
| Electrical capacitance                        | 1.5         | 3.0         | 4.5         | 6.0         | 9.0         |
| Dynamic operating current coefficient (DOCC)  | 12.5        | 12.5        | 12.5        | 12.5        | 12.5        |
| Unloaded resonant frequency (f <sub>0</sub> ) | 18          | 14          | 10          | 8.5         | 6           |
| Standard operating temperature range          | -20 to +80  |
| Voltage connection                            | VL          | VL          | VL          | VL          | VL          |
| Sensor connection                             | L           | L           | L           | L           | L           |
| Weight without cables                         | 20          | 28          | 46          | 54          | 62          |
| Material case / end pieces                    | N-S         | N-S         | N-S         | N-S         | N-S         |
| Length L                                      | 32          | 50          | 68          | 86          | 122         |
| Recommended amplifier/controller              | C, D ,G , H |





Response of a P-841.10 to a 3 nm peak-to-peak square wave control input signal, measured with servo-control bandwidth set to 240 Hz and 2 msec settling time. Note the crisp response to the square wave control signal.

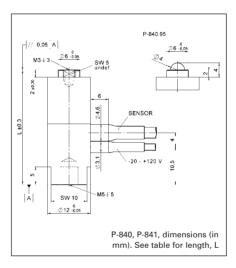
## **Factory Installed Options**

#### P-703.20

High-Vacuum Option (see p. 1-44)

#### P-840.95

Ball Tip (see page 1-44)


## **Accessories**

#### P-176.20

Magnetic adapter with M3 threaded stud, see page 1-45. Extension cables & connectors: see page 6-55 in the "Piezo Drivers & Nanopositioning Controllers" section.

### Notes

See the "Piezo Drivers & Nanopositioning Controllers" section for our comprehensive line of low-noise modular and OEM control electronics for computer and manual control.



## Open-Loop

| P-840.10   | P-840.20   | P-840.30   | P-840.40   | P-840.60   | Units         | Notes see<br>page 1-46 |
|------------|------------|------------|------------|------------|---------------|------------------------|
| 15         | 30         | 45         | 60         | 90         | μm ±20%       | A2                     |
| -          | -          | -          | -          | -          | μm            | A5                     |
| -          | -          | -          | -          | -          |               | В                      |
| - / 0.15   | - / 0.3    | - / 0.45   | - / 0.6    | - / 0.9    | nm            | C1                     |
| 57         | 27         | 19         | 15         | 10         | N/µm ±20%     | D1                     |
| 1000 / 50  | 1000 / 50  | 1000 / 50  | 1000 / 50  | 1000 / 50  | N             | D3                     |
| 0.35       | 0.35       | 0.35       | 0.35       | 0.35       | Nm            | D6                     |
| 1.5        | 3.0        | 4.5        | 6.0        | 9.0        | μF ±20%       | F1                     |
| 12.5       | 12.5       | 12.5       | 12.5       | 12.5       | μΑ/ (Hz x μm) | F2                     |
| 18         | 14         | 10         | 8.5        | 6          | kHz ±20%      | G2                     |
| -20 to +80 | °C            | H2                     |
| VL         | VL         | VL         | VL         | VL         |               | J1                     |
| -          | -          | -          | -          | -          |               | J2                     |
| 20         | 28         | 46         | 54         | 62         | g ±5%         | K                      |
| N-S        | N-S        | N-S        | N-S        | N-S        |               | L                      |
| 32         | 50         | 68         | 86         | 122        | mm ±0.3       |                        |
| C,G        | C,G        | C,G        | C,G        | C,G        |               |                        |

## Piezo Actuators

Nanopositioning & Scanning Systems

Active Optics / Steering Mirrors

Tutorial: Piezoelectrics in Positioning

Capacitive Position Sensors

Piezo Drivers & Nanopositioning Controllers

Hexapods / Micropositioning

Photonics Alignment Solutions

Motion Controllers

Ceramic Linear Motors & Stages

Index

<sup>\*</sup> Closed-loop models can attain linearity up to 0.15% and are shipped with performance reports.

<sup>\*\*</sup> Resolution of piezo actuators is not limited by friction or stiction. Noise equivalent motion with E-503 amplifier;

<sup>\*\*\*</sup> Dynamic small-signal stiffness ~30% higher.